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Abstract 

A computerized non-linear-least-squares regression procedure to analyse the galvanostatic 
current-potential data for kinetically hindered reactions on porous gas-diffusion electrodes 
is reported. The simulated data fit well with the corresponding measured values. The 
analytical estimates of electrode-kinetic parameters and uncompensated resistance are found 
to be in good agreement with their respective values obtained from Tafel plots and the 
current-interrupter method. The procedure circumvents the need to collect the data in 
the limiting-current region where the polarization values are usually prone to errors. The 
polarization data for two typical cases, namely, methanol oxidation on a carbon-supported 
platinum-tin electrode and oxygen reduction on a Nafion-coated platinized carbon electrode, 
are successfully analysed. 

Introduction 

Porous electrodes that are commonly employed with fuel cells and batteries are 
routinely characterized by galvanostatic polarization studies. In an earlier publication 
[l], a method to estimate the electrode-kinetic parameters of gas-diffusion electrodes 
using the inflection point in the steady-state, current-potential curve was reported. 
Unlike the conventional procedure, this method does not require the steady-state, 
current-potential data close to the limiting-current values. This is important as such 
data are usually prone to experimental errors that arise from fluctuations in the steady- 
state values due to: (i) evolution of gases; (ii) shielding of the electrode surface by 
evolving gas bubbles to give an additional ohmic component, and (iii) interference 
from other reactions. Nevertheless, the graphical estimation of the electrode-kinetic 
parameters employed in this method is quite cumbersome, and could be erroneous 
if care is not taken to find slopes that represent changes in potential with current at 
various points of the current-potential curve. It was therefore considered worthwhile 
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to extract the electrode-kinetic parameters from the current-potential data by employing 
analytical mathematical packages that have become available with the advent of high- 
speed personal computers. 

This communication describes a mathematical package that is used to derive the 
electrode-kinetic parameters from the galvanostatic steady-state current-potential data 
of certain gas-diffusion electrodes. This package makes the evaluation of electrode- 
kinetic parameters both simpler and faster than graphical methods. 

Phenomenology and algorithm 

A typical polarization curve for a gas-diffusion electrode is sigmoidal in shape and 
comprises three distinct regions. The first region belongs to the voltage drop at low 
currents and is due to the interface resistance. The second region is characterized by 
a linear drop with increasing current and is due to the intrinsic ohmic resistance of 
the electrolyte. The third region termed the ‘diffusion-limited regime’ and is represented 
by the final additional drop at high currents that arises from the depletion of acceptors 
at the interface for the transitory species. For such a situation, the current-potential 
behaviour under anodic Tafel conditions is given by [2, 31: 

k =(I- !J ev(grl) (1) 

where i, is the measured current density, i. the exchange current density, i,,= the 
limiting current density, n the number of .electrons involved in the rate-determining 
step (rds), LY the anodic charge-transfer coefficient, 77 = (E-E’) the difference between 
the measured (E) and the reversible (E’) values of the potential and F, R and T 
have their usual meaning. 

Alternatively, eqn. (1) with the uncompensated ohmic component (R,) is given 
by: 

E=E’- >Lln 
i0(& a - ia) [ 1 .* . + i,R, 

h&4 
(2) 

Equations (1) and (2) possess an inflection point at which the first derivative of 
potential with respect to the current (dE/di,) is minimum for the anodic reactions. 
Consequently, the second derivative (d2E/dia2) vanishes. Considering eqn. (2): 

dE -_+c l +R 
RT 1 -= 

43 naF i, noS (iL,a - i,) ” 

and, 

1 

(3) 

(4) 

At the inflection point i= iinf and d2Eldia2 = 0, consequently, i,,= = 2& This relationship 
yields iI,= directly by determining the value of the current at the inflection point which 
corresponds to the minimum in the plot of dE/di, versus l/i,. 

Subsequently, the kinetic parameters are obtained by recasting eqn. (3) in the 
following form: 

dE RT 1 i,, -cc 
& 

--- +R 
nciF i, (z&-i,) ” 

(5) 
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The plot of dE/di, versus il,a/(ia(il,a -Q) is a straight line with an intercept R, and a 
slope RT/nd. The value of i. is obtained by substituting for R,, na, i,,= in eqn. (2). 
Similar relationships could be written for an electrochemical process under cathodic 
Tafel conditions. 

Alternatively, the electrode-kinetic parameters can be obtained analytically by a 
non-linear regression of the current-potential data using the algorithm described below. 
Generally, non-linear-least-squares regression uses a mathematical function of the form: 

r=f(b,, bz, . . . . Lx) 

where x is the independent variable, bl, b2, . . . . b, are the parameters to be estimated, 
and y is the response value of the function, f. In the present case, y is taken as the 
electrode potential, E, at certain values x of the current, J. In a galvanostatic experiment, 
the electrode is loaded at various currents and the corresponding steady-state polarization 
potentials are recorded. In the algorithm, the current-potential input data is a NX2 
matrix where N represents the total samples of J and E. The Tafel regime of the 
response polarization lies within the extremities where the current is represented by 
a Taylor series approximation of the polarization and the onset of mass polarization 
[2, 31. Accordingly, the range of the data set for non-linear regression is fixed by: 

i=l , . . . . (N-k) 

where k represents the total number of discarded J-E data. 

(7) 

The starting values of the independent variable, x, and the response function, y, 
are defined as x=Ji+l and y=Ei+, where I represents the discarded data points that 
pertain to the polarization region that is governed by a Taylor series approximation. 

The algorithm for the non-linear regression of the current-potential data set 
comprises a matrix (M) with its columns equal to the number of unknown b parameters 
and an i number of rows. The columns in this matrix contain the array of data that 
correspond to the functional form chosen for the non-linear regression applied to the 
independent variable, x. The unknown b parameters are obtained from: 

b = (M=M) - l(MTy) (8) 

where MT is the transpose of the matrix M. This facilitates evaluation of the function, 
f. The response function for an electrochemical reaction in the Tafel regime could 
be taken as: f(x) = bl + b2x + best fit of the regression is determined by 
least-squares deviation: 6= or the mean-squared error is given by: 

S/(length(y) -length(b)). 

Case studies 

In order to examine the feasibility of the model and the adaptability of the non- 
linear regression for the estimation of electrode-kinetic parameters, two typical case 
studies of kinetically hindered reactions occurring on porous gas-diffusion electrodes 
have been undertaken. The first case study involves methanol oxidation on a carbon- 
supported platinum-tin catalyzed electrode in sulfuric acid electrolyte [4], while the 
other is concerned with the oxygen-reduction reaction at a Nafion-coated gas-diffusion 
electrode that is composed of a carbon-supported platinum catalyst [S]. 

The mathematical package for methanol oxidation on a carbon-supported plati- 
num-tin catalyzed electrode is presented in the Appendix. Computation was carried 
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out by using the MathematicaTM software package [6,7] in an interactive mode. According 
to the method described above, a non-linear-least-squares regression was used to fit 
the measured data (Figs. 1 and 2). The base function employed for the analysis is 
obtained by combining the Volmer-Butler equation (corrected for both the mass 
transport and the ohmic components of polarization [2,3]) with a polynomial function. 
The latter takes into account deviations from the theoretical behaviour that arise from 
the presence of secondary reactions at high overpotentials and also from fluctuations 
in the experimental data (Fig. 2). The regression ranges and plot limits are at the 
option of the user as these change from situation to situation. The method provides 
satisfactory fitting to the input data. The precision of the data fitting is estimated 
from the mean-squared error. Derivative functions of the simulated curve are then 
obtained analytically (Figs. 3 to 5). The intersection on the abscissa of the second 
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Fig. 1. Experimental current-potential data for methanol oxidation on a carbon-supported 
platinum-tin electrode in sulfuric acid electrolyte at 60 “C: curve 1 with, and curve 2 without 
ohmic correction. 
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Fig. 2. Comparison of (full line) simulated current-potential data with (filled squares) experimentally 
obtained values for methanol oxidation. 
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Fig. 3. Simulated first derivative (dE/dI) of potential (E) with respect to current, J, vs. l/J for 

methanol oxidation. 

Fig. 4. Simulated dEldJ and dZEldlZ vs. current, J, for methanol oxidation. 

derivative function (Fig. 4) gives the inflection point which yields the value of the 
limiting current. Linear regression of the derivative of simulated curve versus the 
inverse of current gives the electrode-kinetic parameters (ncr) and the uncompensated 
resistance (R,). The estimated R, values are found to be in close agreement with 
those obtained experimentally by the current-interrupter method. Furthermore, the 
electrode-kinetic parameter @a) is close to its value obtained from the Tafel plot 
subsequent to the correction for mass transfer of the data (Fig. 6). This confirms the 
feasibility of the present regression procedure. The overall process of calculation and 
rendering in post-script of the plots takes about 30 s on a PC 80486 IntelTM microprocessor 
equipped with 16 Mbyte RAM memory. 

The representative data for oxygen reduction on a Nafion-coated platinized carbon 
electrode corresponding to Figs. 2, 5 and 6 for methanol oxidation are shown in 
Figs. 7 to 9, respectively. In this case study, there are two distinct Tafel regimes. 
Accordingly, the regression had to be carried out in two current-potential regions of 
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Fig. 5. Simulated dE/dJ vs. J,,J(J&T,,,-J,)) for methanol oxidation. 
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Fig. 6. Tafel plots for methanol oxidation. 

the polarization data. The estimated values of electrode-kinetic parameters are found 
to be in good agreement with those reported in a study employing microelectrodes 
[8]. The estimated values of uncompensated resistance are also close to those obtained 
experimentally. 

A comparison between the values of electrode-kinetic parameters obtained from 
the Tafel plot and those derived from the simulated data for both the case studies 
are presented in Table 1. 

Conclusions 

An advantage of the present digital simulation of steady-state galvanostatic data 
for gas-diffusion electrodes is the analytical evaluation of the limiting current that 
circumvents the need to reach the current-potential region where secondary reactions 
can vitiate the data. The analysis is also useful for situations where large ohmic drops 
occur at the electrode/electrolyte interface since the uncompensated resistance is directly 
obtained from the simulated data by using the linear regression procedure. It is 
noteworthy that the correction of current-potential data both for mass transfer and 
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Fig. 7. Comparison of simulated current-potential data for oxygen reduction on 
platinized-carbon electrode at 60 “C with experimentally observed data. 

183 

10 

I 

“E 

E” L 0 
0 0.005 0.01 0.015 0.02 

2 
w‘ 

JI,~/(J~(JI,~-J~)),(~~‘/~A) 

D 

-1.0. 

-2.0 

Fig. 8. Simulated dE/dl vs. Jl,cl(J,,c-Jc)) for oxygen reduction. 

2001 

a Nafion-coated 

OO I -2 -1 0 1 2 3 

log ((J,.JI.~)~(JI,~-J.) (m4/cmz)) 

Fig. 9. Tafel plots for oxygen reduction. 
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TABLE 1. Electrode-kinetic parameters and R, values 

Case study 

Methanol 
oxidation 

Simulated curve Tafel plot 

na1 nff2 nQl na2 

0.49 0.57 

Simulated Measured iiti 

R, RU (mA cm-‘) 
(Cl cm’) (a cm’) 

0.50 0.51 490.85 

Oxygen reduction 
reaction 

1.00 0.43 1.08 0.53 0.33 0.32 256.32 

ohmic components of polarization is important in deriving the electrode-kinetic pa- 
rameters for reactions on gas-diffusion electrodes. The present non-linear regression 
analysis provides more accurate and stable results in relation to the graphical approach. 
It is fast and can be easily performed using readily available mathematical packages 
on microcomputers. 
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Appendix 

Input datajile (V is equivalent to E), corrections for electrode geometric area (1.5 cm2), 
SCE (242 mV vs. NHE) and experimentally measured R, (0.51 R cm’); interpolation 
of the data 
datainput = ReadList [“PtSnfile. txt”, {Number, Number}]; 
Jin =Transpose[datainput] [[l]]; J= Jin/l.S; 
Vin =Transpose[datainput] [[2]]; V = Vin + 242; 
datamod = {J,V}; data = Transpose[datamod]; 
Ru=0.51; Vr=V-J Ru; Nl =Length [J]; 
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data1 = Take[data, (5, Nl}]; 
mmod ={J, Vr}; m = Transpose[nunod]; ml =Take[m, (5, Nl}]; 
hy=Append[Table[xA i, {i, 0, l}], Log[x]]; 
fl = Fit [datal, by, x]; 
f2=Fit [ml, hy, x]; 

Plot of qerimental and ohmic corrected data 
Show [Plot [fl, (x, 1, 600}, DisplayFunction *Identity], 
Plot[f2, {x, 1, 600}, DisplayFunction + Identity], 
ListPlot[data, DisplayFunction -+ Identity], 
ListPlot[ml, DisplayFunction + Identity], 
PlotRange + ((0, 600}, (0, 1 lOO}}, 
AxesLabel --+ (“J (mA/cm’)“, “E(mV)vs.NHE”}, 
DisplayFunction --t SDisplayFunction]; 
See Fig. 1 for plot. 

Non-linear-least-squares fitting of data 
Nl = Lengthtdata]; 
data1 =Take[data, (10, Nl}]; 
hy2 = Append[Table [x A i, (i, 0, 3}], Log[x + (10 A - 13)]]; 
fl = Fit[datal, hy2, x]; 

Plot of simulated data 
p3 = Plot[fl, {x, 0, 1500}, DisplayFunction --f Identity]; 
p4 = ListPlot [data, DisplayFunction + Identity]; 
Show[pS, p4, PlotRange -+ ((0, X00}, (0, 1500}}, 
AxesLabel +(“J (mA/cm*)“, “E(mV)vs.NHE”), 
DisplayFunction -+ $DisplayFunction] 
See Fig. 2. for plot. 

Derivatives of simulated curve 
t =D[fl, x]; 
m=Table[t, {x, 50, 700, lo}]; xx=Table[l/x, {x, 50, 700, 10)1//N; 
g={xx, m}; gg=Transpose[g]; ggg=Reverse[gg]; 
1 = Fit[ggg, (1, xxx]. xxx]; 

Plot of derivative function of simulated curve versus inverse of current 
p6 = Plot[l, {xxx, 0,0.02}, DisplayFunction -Identity]; 
p5 = ListPlot[ggg, DisplayFunction +Identity]; 
Show[pS, p6, PlotRange -+ {{0,0.02}, {0,2}}, 
AxesLabel --t (“l/J (cm%nA)“, “dE/dJ (ohm cm’)“}, 
DisplayFunction --) $DisplayFunction] 
See Fig. 3 for plot. 

Electrode-kinetic parameters (n) and R, as obtained from simulated data 
nl = 28/(D[l, xxx]O.5) 
1.09204161409148 (represents the number of electrons involved in the rds) 

0.6297314787758037+51.28009709280995*xxx 
(represents R, and slope, respectively) 

Limiting current (A) as obtained from simulated data 
t2=D[fl, {x, 2}]; 
Solve[t2= =0, x]; 
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b=Last[%]; 
ing = xl.70 
490.8535467839074 (represents current at the inflection point) 

Derivatives of simulated curves 
pll = Plot[t2*1000, {x, 0, 1600}, DisplayFunction + Identity]; 
p12= Plot[t*5, {x, 0, 1600}, DisplayFunction -+ Identity]; 
Show[pll, ~12, PlotRange -+ ((0, 1600}, { - 10, lo}}, 
AxesLabel + (,‘J”, “dE/dJ, d*E/dJ”‘}, 
DisplayFunction + $DisplayFunctionJ 
See Fig. 4 for plot. 

Electrode parameter (n) subsequent to mass-transport correction and estimation of R, 
ilim=2*infl; mm=Table[t, {x, 50, 600, lo}]; 
xa= Table[(ilim/(x*(ilim-x))), {x. 50, 600, lO}]//N; 
ga = {xa, mm}; gga = Transpose[ga]; 
gga2 = Reverse[gga]; 
12= Fit[gga2, (1, x4),x4] 
0.50242458017527+56.93703475715085*x4 
(represents R, and slope, respectively, subsequent to mass-transport correction) 
n2= 28/(D[12, x4] 0.5) 
0.9835426140271 (represents the number of electrons 
involved in the rds, subsequent to mass-transport correction) 

Mass-transport corrected derivative function of simulated curve 
~18 = Plot[l2, {x4, 0, 0.02}, DisplayFunction -+ Identity]; 
~19 = ListPlot[gga2, DisplayFunction -+ Identity]; 
Show[pl8, ~19, Plot Range+ {{0,0.02}, {0,2}}, 
AxesLabel -+ (“Jl/(J(Jl -J)) (cm’/mA)“, 
(“dE/dJ (ohm cm’)“}, 
DisplayFunction + $DisplayFunction] 
See Fig. 5 for plot. 

Tafel analysis of data subsequent to mass transport and ohmic correction 
Jl=ilim; Jl =Take[J, (7, 26}]; Jm=((Jl*Jl)/(Jl-Jl)); 
JJm=Log[lO, Jm]; Wr=Take[Vr, (7, 26}]; 
lim = {JJm, Wr}; liml = Transpose[lim]; 
Ill= Fit[liml, (1, x}, x]; 
n3 = 66/(D[lll, x] 0.5) 
1.147399724752915 (represents the number of electrons involved in the rds) 
pppl =ListPlot[liml, DisplayFunction+Identity]; 
pp2 = Plot[lll, {x, 0, 4}, DisplayFunction + Identity]; 
Show [ppl, pp2, PlotRange +{{O, 4}, (0, 800}}, 
AxesLabel+(“Log((J-Jl)/(Jl-J) (mA/cm*))“, 
(“E (mV) vs. NHE”}, 
DisplayFunction + $DisplayFunction]; 
See Fig. 6 for plot. 


